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ABSTRACT

The first enantioselective synthesis of (�)-jiadifenin (1), a potent neurite outgrowth promoter isolated from the Illicium species, is described. The
synthetic strategy builds upon bicyclic motif 6, which represents the AB ring of the natural product and proceeds in 19 steps and 1.1% overall
yield. Key to our approach is a Mn(III)-mediated oxidation reaction of A ring that, following a regio- and diastereoselective R-hydroxylation and
methylation sequence, produces the desired functionalities of (�)-jiadifenin. The effect of synthetic 1 in NGF-mediated neurite outgrowth was also
measured in PC-12 cells.

Nerve growth factor (NGF) and related members of the
neurotrophin family of proteins are essential for the sur-
vival and differentiation of sensory and sympathetic
neurons.1 Studies over past decades havedemonstrated the
great therapeutic potential in using NGF to prevent, slow
down, or even reverse the progression of neurodegenera-
tive disorders, including Alzheimer’s and Parkinson’s
disease.2 Like many polypeptides, NGF is rapidly de-
graded in the body and is incapable of crossing the blood
�brain barrier. Its poor pharmacokinetic profile has
prompted the scientific community to explore alternative

therapeutic strategies based on small molecules that can
mimic neurotrophins, promote their biosynthesis, or reg-
ulate their cellular signaling.

In 2002, Fukuyama and co-workers reported the isola-
tion of a novel seco-prezizaane-type sesquiterpene, jiadi-
fenin (1) (Figure 1), from Illicium jiadifengpi.3 Initial
evaluation of its biological profile showed that 1 promotes

Figure 1. Structures of jiadifenin (1) and jiadifenolide (2).
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significant neurite outgrowth in primary cultures of fetal
rat cortical neurons in concentrations as low as 0.1 μM.
More recently, from the same plant species the Fukuyama
group isolated jiadifenolide (2), another structurally re-
lated andmore potent neurotrophic agent.4 Their complex
fused-ring system, along with their significant therapeutic
potential, provide very intriguing and challenging targets.
Synthetic studies toward these compounds5 culminated a
racemic synthesis of jiadifenin by the Danishefsky group.6

These efforts also allowed preliminary SAR studies that
highlighted clearly the medicinal value of this family of
small molecules.
We have recently reported the first enantioselective

synthesis of jiadifenolide (2).7 Our strategy offers the
opportunity to diversify our chemistry toward othermem-
bers of this family. Herein, we report the first enantiose-
lective synthesis of jiadifenin (1).

Scheme 1 illustrates the retrosynthetic analysis toward
(�)-jiadifenin. The target molecule was envisioned to
ultimately arise from oxidation and hemiacetalization of
3. A sequential diastereoselective C-10 R-hydroxylation
and C-1 methylation could be used to install the desired
functional groups on the jiadifenin framework.Moreover,
the A ring of 3 was projected to arise from selective
manipulation at the C-1 and C-2 centers of motif 4. In
turn, 4 could be formed from tricyclic structure 5,7 via a
sequence that includes oxidative cleavage of the terminal
alkene, regio- and diastereoselective epoxide formation,

and acid-induced “6-exo-tet” epoxide opening, thus con-
structing the D ring lactone. Access to 5 would be accom-
plished from “Hajos-Parrish-like”7,8 diketone 6,9 via a
sequential Stiles carboxylation10 and installation of the
quaternary methyl moiety, followed by a Pd(0)-mediated
carbomethoxylation11 andTFA-assistedC ring formation.
Lastly, diketone 6 would be produced via an asymmetric
Robinson annulation12 using compounds 7 and 8 as start-
ing materials.
The synthetic effort departed from lactone 4 that was

enantioselectively and efficiently synthesized from dike-
tone 6 in 13 steps with a 15% overall yield (>90% ee,13

Scheme 2).With an abundant amount of 4 in hand (>3 g),
the elimination of C-1 hydroxyl moiety became the first
challenge. Various trials of the C-1 alcohol deoxygenation
under standard or modified Barton�McCombie condi-
tions14 proved unsuccessful. Moreover, mesylation of 4
followed by treatment with a variety of bases failed to
produce the corresponding alkene 9. The dehydration
proceeded smoothly using Martin sulfurane,15 and the
derived crude diene 9 was hydrogenated selectively at the
C-1-C-2 centers with H2(1 atm)/Pd/C to produce com-
pound 10 (72% yield over 2 steps).
The ensuing allylic oxidation at the C-2 position of 10

proved to be difficult, presumably due to the sensitive
6-membered lactone moiety. Several standard or modified
conditionswere evaluated, including SeO2,

16 CrO3/TBHP,17

Scheme 1. Retrosynthetic Analysis of (�)-Jiadifenin
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PDC/TBHP,18 PhI(OAc)2/TBHP,19 Pd(O2CCF3)2/BQ
20

and Rh2(cap)4/TBHP,21 but none of them could yield a
satisfactory result. Gratifyingly,Mn(III) acetate/TBHP22,23

produced traces of 11 after 72 h at ambient temperature.
To avoid side reactions and accelerate the desired trans-
formation, the reaction temperature was then raised to
40 �C, which significantly improved the yield to 65% and
shortened the reaction time to 16 h. With 11 in hand, we
attempted to methylate the C-1 center. We hypothesized
that this reaction would install the methyl group R- to the
enone in a chemoselective fashion. To our surprise, lithia-
tion (LDA) and methylation of 11 with 1.2 equiv of MeI
afforded the C-10 methylated adduct 12. The C-1 position
could be methylated only upon excess amount of MeI,
producing the dimethylated product 13 together with 12.
The structures of compounds 12 and 13 were unambi-
guously confirmed via single crystal X-ray analysis
(Scheme 2).24 Other related alkylation attempts gave
us similar or worse results.

On the basis of these observations, it became obvious
that the C-10 center is more sterically accessible than the
C-1 position. Thus, an alternative sequence for the A-ring
functionalization was developed. Treating 11 with
NaHMDS and quenching of the C-11 enolate with Davis
oxaziridine25 (1 equiv) produced R-hydroxylated lactone
14 as a single diastereomer in 61% yield. Alkylation of 14
with LDA/MeI/HMPA furnished the desired C-1 methy-
lated product 3 with the desired stereochemistry. Without
extensive purification, alcohol 3 was oxidized and rear-
ranged under Jones conditions6 giving rise, after metha-
nolic work up, to (�)-jiadifenin (1) as themajor product in
45% yield (C-10 anomeric mixture, major anomer/minor
anomer≈ 2.5:1; Scheme 3). Synthetic jiadifenin was found
to have identical spectroscopic and analytical properties
(1HNMR, 13CNMR,HRMS) and similar optical rotation
values (measured [R]24D�123.8 (c 0.17, EtOH), literature3

[R]22D �152.9 (c 0.24, EtOH)).

Validation of the biological profile of synthetic (�)-
jiadifenin (1) with regard to the stimulation of NGF-
mediated neurite outgrowth was carried out using a PC-
12 cellular assay.6a,26 As shown in Figure 2, a significant
increase of neuronal differentiation could be observed
upon 72 h of incubation with NGF (50 ng/mL) and 1
(0.3 and 0.5 μM). Specifically, jiadifenin at 0.3 μMinduced
21%ofneurite bearing cells compared to 12% found in the
control containing only NGF and DMSO (Figure 3A). A
28% of neurite bearing cells was observed at 0.5 μM of 1

Scheme 2. Synthesis of 11

Scheme 3. Completion of the Synthesis of (�)-Jiadifenin
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(Figure 3A). In terms of total neurite outgrowth, the
neurite lengths enhanced by 1, at 0.3 and 0.5 μM, were
148% (p < 0.001) and 172% (p < 0.001), respectively,
compared to the DMSOþNGF control (Figure 3B). No
neurite outgrowth was observed in the absence of NGF,27

in agreement with previous findings.6a

In summary, we describe here an efficient and enantio-
selective approach to (�)-jiadifenin (1), a potent promoter
of neurite outgrowth. This approach departs from readily
available diketone 6 and proceeds in 19 steps and 1.1%
overall yield. In addition, we have shown that synthetic
jiadifenin induces significant neurite outgrowth in PC-12
cells in the presence of NGF. Along these lines, our
strategy paves the way for the synthesis of several natural
products of this family28 and designed analogs thereof that
could shine light into the unexplored biological mode of
action of these compounds.
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Figure 3. NGF-enhancement in the PC-12 assay for 72 h. (A)
Percentage of cells with longer processes than two cell body
lengths and (B) total neurite outgrowth length. Values are
reported as means ( SE of triplicate experiments: * P < 0.03,
** P < 0.01, *** P < 0.001.

Figure 2. Images of neurons after 72 h treatment with (A)
DMSO (1% v/v) þ NGF (50 ng/mL), (B) compound 1 (0.3
μM)þDMSOþNGF, and (C) compound 1 (0.5 μM)þDMSO
þ NGF.
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